The bioenergetic signature of cancer
نویسنده
چکیده
Cancer is a heterogeneous and complex genetic disease. In addition to genetic mutations in oncogenes and tumour suppressors, the onset and progression of cancer is also bound to the cancer cell’s microenvironment. After many years of ostracism the energetic metabolism of cancer [1] has been accepted as an additional hallmark of the cancer phenotype [2] and mitochondrial/ glycolytic studies have spurred in the field. In this regard, it has been reported that the relative expression of b-F1-ATPase, which is the catalytic subunit of the mitochondrial H-ATP synthase and thus a rate-limiting component of mitochondrial oxidative phosphorylation, is significantly diminished in human tumours when compared to its expression in normal tissues [2]. The down-regulation of b-F1-ATPase is accompanied by an increased expression of GAPDH, a marker of glycolysis. The tumour drop in the b-F1-ATPase/GAPDH ratio, that defines the “bioenergetic signature” of the cell [3], is a phenotypic trait fulfilled by more than 95% of the carcinomas analyzed in large cohorts of breast, colon and lung cancer patients [2]. These findings support a deficit in the overall bioenergetic activity of mitochondria in cancer. The quantification of the bioenergetic signature in different human carcinomas revealed that, irrespective of the cancer type, energy metabolism has a unique protein signature [4], thus providing a generic marker of the cancer cell that might be exploited in the combat of the disease [2]. The bioenergetic signature also has clinical relevance as an indicator of disease progression and as a predictive marker of the cellular response to chemotherapy [2]. Moreover, the bioenergetic signature affords a gauge of the glycolytic activity of the tumours, supporting that an altered oxidative phosphorylation is one of the determinants that underlies the abnormal aerobic glycolysis of the cancer cell [5]. The specific repression of b-F1-ATPase mRNA translation partially explains the abnormal bioenergetic activity of mitochondria in colon, lung and breast tumours [6] as well as in hepatocarcinomas [7]. By manipulation of the bioenergetic signature in cancer cells we have documented that tumour promotion inevitably requires the selection of cells with a repressed bioenergetic activity of mitochondria [8]. In others words, cancer cells with a functional bioenergetic activity of mitochondria are unable to promote tumour development. In this presentation, I will summarize some of the findings that stress that cancer progression requires the silencing of the bioenergetic activity of mitochondria, emphasize its potential value for translation to the bed-side and discuss some of the strategies that we are developing aimed at identifying the players that participate in the regulation of the bioenergetic signature of the cancer cell.
منابع مشابه
Gastric Cancer MicroRNAs Meta-signature
Gastric cancer (GC) is one of the most common types of cancer and the second leading cause of cancer-associated mortality. Identification of novel biomarkers is critical to prolonging patient survival. MicroRNAs (miRNAs) proved to play diverse roles in the physiological and pathological state in cancers including GC. Herein we were aimed at performing a meta-analysis on miRNA profiling studies ...
متن کاملLoss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas.
The down-regulation of the catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is a hallmark of most human carcinomas. This characteristic of the cancer cell provides a proteomic signature of cellular bioenergetics that can predict the prognosis of colon, lung, and breast cancer patients. Here we show that the in vivo tumor glucose uptake of lung carcinomas, as assessed by p...
متن کاملThe bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis.
The aim of this study was to investigate the mitochondrial bioenergetic signature of lung adenocarcinomas as a prognostic marker of cancer progression. For this purpose, a series of 90 lung adenocarcinomas and 10 uninvolved lung samples were examined for quantitative differences in protein expression using two-dimensional polyacrylamide gel electrophoresis. The beta subunit of the mitochondrial...
متن کاملAlteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer.
Recent findings indicate that the expression of the beta-catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is depressed in liver, kidney and colon carcinomas, providing further a bioenergetic signature of cancer that is associated with patient survival. In the present study, we performed an analysis of mitochondrial and glycolytic protein markers in breast, gastric and pro...
متن کاملThe bioenergetic signature of cancer: a marker of tumor progression.
Mitochondrial H+-ATP synthase is required for cellular energy provision and for efficient execution of apoptosis. Almost one century ago, Otto Warburg proposed the hypothesis that mitochondrial function might be impaired in cancer cells. However, his hypothesis was never demonstrated in human carcinomas. In this study, we have analyzed the expression of the beta-catalytic subunit of the H+-ATP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2010